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Abstract

In medical image analysis, the image content is often represented by computed
features that need to be interpreted at a clinical level of understanding to support
the development of clinical diagnosis systems. Many features are of abstract nature,
as for instance features derived from a wavelet transform. The interpretation and
analysis of such features is difficult. This lack of coincidence between computed
features and their meaning for a user in a given situation is commonly referred to
as the semantic gap. In this work, we propose a method for feature analysis and
interpretation based on the simultaneous visualization of feature and image domain.
Histopathological images of meningioma WHO (World Health Organization) grade
I are firstly color transformed and then characterized by features derived from the
Discrete Wavelet Transform. The wavelet-based feature space is then visualized and
explored using unsupervised machine learning methods. Our approach allows to
analyze and select features regarding their relevance for the description of clinically
relevant characteristics.
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1 Introduction

In medical image analysis an increasing amount of processing tools is devel-
oped to assist clinical experts in diagnostic processes, including techniques for
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automated classification or content based image retrieval. In such applications
the image content is characterized by numerical image features. It is challeng-
ing to decide which features are the most appropriate ones for the specific
purpose considered.

The most common method is to analyze the features regarding their discrim-
inative power for the specific purpose. In case of automated classification one
can e.g. perform classification on all possible subset of features and then select
the feature set providing the highest classification score. However, this method
of feature analysis strongly depends on the specific type of application, e.g.
the applied classification methods, the size of the database and so on [10].
Furthermore it is still a black-box scenario, i.e. it does not provide an inter-
pretation of the features in the image domain. While more simple and direct
features such as color histograms are easy to interpret in the image domain,
features based on transforms such as Fourier or Wavelet Transform are much
more difficult to understand. In general this marks a crucial point of criticism
by the physicians, who are interested in features or feature sets that can be
interpreted to some degree at a clinical level of understanding. It is therefore
desirable, to develop methods for linking numerical features and feature sets
to clinical semantics.

The phenomenon of missing interpretability of numerical features is also called
the semantic gap which is defined according to [22] in the following way: The
semantic gap is the lack of coincidence between the information that one can
extract from the visual data and the interpretation that the same data have for
a user in a given situation. Recently, the semantic gap has been discussed in
the context of image retrieval. In [21] images are annotated using medical key
words in order to improve retrieval performance. In [23] semantic metadata
is extracted from visual descriptors by classifying images into semantic cate-
gories and organize a database based on concepts.

In this work we address the problem of the semantic gap regarding the inter-
pretation of wavelet-based image features. To link local, morphological image
characteristics to the space spanned by the wavelet-based features a Self Or-
ganizing Map (SOM) was employed. As a method of unsupervised learning
the SOM is a powerful tool providing both the ability of clustering and data
visualization.

SOMs have been considered to serve as interactive visualization tools e.g.
regarding database visualization and browsing [6], content-based image re-
trieval [13] or building of a texture dictionary [17]. One application of SOMs
on histological datasets is the investigation of human defined image charac-
teristics as described in [9]. In that work the features used for clustering are
based on human definition and rating, i.e. the occurrence of a specific histo-
logical characteristic (e.g. collagen fibers) has been graded on a scale of four
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by a human observer.

Here, we demonstrate the ability of SOMs to serve as an interface for the anal-
ysis of numerical features. We demonstrate the method utilizing an example
database of microscopic images of benign brain tumors. The database con-
tains histopathological images of four subtypes of meningiomas. The subtypes
are classified by a medical expert into four meningioma classes depending on
textural characteristics at different scales. Therefore we have chosen from the
variety of methods for texture characterization the Discrete Wavelet Trans-
form as a method which allows to encode scale-dependent image information.

The SOM-based visualization of the feature space then enables us to establish
a correlation between single features and histologically relevant image struc-
tures and thus the selection of a subset of clinically important features.

Preliminary experiments have already been described in [14] which suffered
from a lack of interpretability. Utilizing a new color transform we can now
show, how our approach can be used to bridge the gap between numerical
features and histopathological terms and thus transfer clinical terms into the
feature space.

2 Materials

In order to provide a test set of data for our system, we have chosen four
histopathologically well defined subtypes of meningioma, a benign tumor of
the coverings of the brain, i.e. the meninges [16]. The four subtypes are charac-
terized by distinct features (Table 1) allowing a trained investigator to make
an unequivocal diagnosis in most cases. Examples of subimages (256 × 256
pixel) are shown in Figure 1. However, intermediate features are especially
common between fibroblastic, transitional and psammomatous subtypes.

Diagnostic tumor samples were derived from neurosurgical resections at the
Bethel Department of Neurosurgery, Bielefeld, Germany for therapeutic pur-
poses, routinely processed for formalin fixation and paraffin embedded. Four
µm thick microtome sections were dewaxed on glass slides, stained with Mayer’s
haemalaun and eosin, dehydrated, and coverslipped with mouting medium
(Eukitt R©, O. Kindler GmbH, Freiburg, Germany). Archive cases from the
years 2004 and 2005 were selected for representing typical features of each
meningioma subtype. Slides were analyzed on a Zeiss Axioskop 2 plus mi-
croscope with a Zeiss Achroplan 40x/0,65 lens. After manually focusing and
automated background correction, 1300× 1030 pixels, 24 bit, true color RGB
pictures were taken at standardized 3200 K light temperature in TIF format
using Zeiss AxioVision 3.1 software and a Zeiss AxioCam HRc digital color
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Subtype Characteristics

Meningotheliomatous Lobulated, cells forming a syncytium

Fibroblastic Spindle-shaped cells,

matrix abundant in collagen

Transitional Whorls, few psammoma bodies,

features of fibroblastic

Psammomatous Transitional appearance,

abundant psammoma bodies
Table 1
A summary of the histological features for the four tumor classes.

Fig. 1. Example subimages for the different subtypes of meningiomas: a) -
meningotheliomatous, b) - fibroblastic, c) - psammomatous, d) - transitional.

camera (Carl Zeiss AG, Oberkochen, Germany). Five cases were selected for
each diagnostic group and four different photomicrographs were taken of each
case, resulting in a set of 80 pictures. Each original picture was truncated to
1024 × 1024 pixels and then subdivided in a 4 × 4 subset of 256 × 256 pixel
pictures. This resulted in a database of 1280 subimages for further analysis.
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3 Methods

3.1 Color channels

In many applications RGB (Red, Green, Blue) images are transformed into a
color space more suitable for human perception, i.e. the HSV (Hue, Saturation,
Value) color space [11] or the L*u*v color space [5]. Since pathology images
are limited regarding their colors we transform the RGB values in order to
enhance special image structures. In the following, we have computed two
transformed images from the RGB values (R(x,y), G(x,y), B(x,y)). Firstly,
an intensity value is computed by averaging the three color channels for each
pixel and location (x, y) according to

h1(x, y) =
1

3
∗ [R(x, y) + G(x, y) + B(x, y)]. (1)

The images computed according to equation (1) will further be denoted as
intensity images. Secondly, a transform in color space is designed to extract
the cell nuclei from the image, since they appear to exhibit significant char-
acteristics for distinguishing the tumor classes. However, the image color of
a single stained tumor section inevitably depends to some extent on changes
during the preparation. To reduce dependence on these color changes, we ap-
ply a mean shift to all images and color channels. The average color, in the
following indexed by av, is supposed to be very close to the color of those
structures providing the largest areas in the image, in this case the cytoplasm
or the psammoma bodies.

Rshift(x, y) = R(x, y)− Rav (2)

Gshift(x, y) = G(x, y)−Gav (3)

Bshift(x, y) = B(x, y)− Bav (4)

The preparation procedure described above using the routine H&E stain leads
to a blue coloration of the cell nuclei in contrast to the surrounding cytoplasm
usually showing a pink color. We point out that this holds for the dataset
analyzed since it contains only WHO grade I meningioma. Some other types
of meningioma, e.g. the clear cell meningioma (WHO grade II) provide a col-
oring different from the one described.
After applying the mean shift to the color channels, those image structures,
which are “bluer” than the surrounding tissue, are characterized by Bshift(x, y) >
Rshift(x, y).

By computing
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Fig. 2. Example subimages for the transform in color space. Each of the subimages
already shown above is displayed as intensity image h1 and with enhanced cell nuclei
h2: a) - meningotheliomatous, b) - fibroblastic, c) - psammomatous, d) - transitional.

h2(x, y) = (maxRBshift
(x, y)− Rshift(x, y)) ∗ S (5)

with maxRBshift
(x, y) =max{Rshift(x, y),Bshift(x, y)} (6)

all image structures with Bshift(x, y) < Rshift(x, y) are set to zero. The remain-
ing structures, which are supposed to be mainly cell nuclei, are retained.

The factor S is the saturation as defined in the HSV color space [7]

S =
maxRGB(x, y)−minRGB(x, y)

maxRGB(x, y)
(7)

with maxRGB(x, y) =max{R(x, y),G(x, y),B(x, y)}. (8)

This factor suppresses artefacts occurring from the white areas in the images.
Especially in psammomatous meningiomas the white areas are due to artificial
cracks during tissue processing and do not represent relevant staining proper-
ties of the tumors. The resulting images of the transform h2 will be denoted
as cell nuclei images in the further description. Figure 2 shows examples of
the transform.

3.2 Discrete Wavelet Transform

In this work, wavelet based features are used for tissue characterization. Wavelet
based multiresolution analysis enables to assess the scale-dependent informa-
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tion in signals and images [19]. A signal f is decomposed using the Discrete
(Dyadic) Wavelet Transform into a basis of shifted and dilated versions of a
basic wavelet or mother wavelet ψ [4]

f(x) =
∑
(j,k)

dj,kψj,k(x) , (9)

with ψj,k(x) = 2j/2ψ(2jx− k) . (10)

Here the index j indicates the dilation or scaling step while k refers to trans-
lation or shifting. The wavelet coefficients dj(k) are given by the scalar prod-
uct dj(k) = 〈f(x), ψj,k(x)〉 or dj(k) = 〈f(x), ψ̃j,k(x)〉 in case of biorthogonal
wavelets with the dual wavelet ψ̃ [4]. An efficient calculation of these coeffi-
cients is accomplished by the Fast Wavelet Transform (FWT), an algorithm
allowing the coefficients to be calculated in a stepwise manner. On the first
scale the signal is decomposed into its details and the remaining signal, i.e. the
approximation, reflecting the particular scale. The details are described by the
wavelet coefficients of this scale while the approximation is represented by the
scaling function coefficients. The procedure can be iterated by a further de-
composition of the approximation into details and approximation of the next
coarser scale [18].

In two dimensions, the wavelets are product functions of the one-dimensional
wavelet- and scaling-function. We have chosen to use the decomposition pro-
cedure, which is called Nonstandard-Decomposition in [24]. The corresponding
coefficients dj,o(kx, ky) therefore do not only reflect a particular scale j, but also
a particular orientation o in the images. The two-dimensional wavelet func-
tions to be considered are ψ(x)φ(y), φ(x)ψ(y), ψ(x)ψ(y) and φ(x)φ(y). The
coefficients corresponding to the latter one are the two-dimensional scaling
function coefficients, further decomposed in the next step, while the coeffi-
cients corresponding to the first functions provide the details in horizontal (x)
direction, vertical (y) direction and the diagonal details.

3.2.1 Wavelet-based image features

Texture is probably the most important descriptor for tissue characterization
in medical textbooks. Several different texture features have been evaluated
in literature, including e.g. co-occurrence matrices, line-angle-ratio statistics
[1,8], Gabor filters [8] or wavelet based features [26]. A comprehensive overview
of texture features can be found in [20]. In this work the texture characteri-
zation does not involve a prior segmentation as e.g. in [5] but is performed on
the entire subimages. To access the scale-dependent information we decided
to use multiresolution wavelet features, as calculated by the discrete wavelet
transform. We use a pair of symmetric, biorthogonal wavelets, developed by
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Cohen, Daubechies and Feauveau. These pairs of scaling and wavelet-functions
are indicated as φ2, φ̃2,2, ψ2,2, ψ̃2,2 in [3]. As described in [2] and [25] the l1 or
l2-norm of the detail coefficients corresponding to one scale and orientation
can be used as powerful texture features. In this work the l1-norm, i.e. the
mean absolute coefficient (MAC) of each scale and orientation has been com-
puted according to l1(dj,o) =

∑
kx,ky

|dj,o(kx, ky)|. The final feature vectors are
based on these MACs. As shown in [14] two types of features based on these
MACs were found to be appropriate to characterize the four types of tissue.
Firstly, a mean absolute coefficient for each scale j is computed according to

f1(j) =
∑
o

MAC(o, j), j = 1..8, o = o1, o2, o3. (11)

Again j is the scale index, while index o indicates the orientation in the image.
The indices o1 and o2 indicate coefficients in vertical or horizontal direction,
while o3 indicates the diagonal details.

Secondly, we use a feature set f2 describing whether the image structures are
anisotropic, i.e. orientated in a preferred orientation.

f2(j) = |MAC(o1, j)−MAC(o2, j)|+ c MAC(o3, j), j = 1..8 (12)

In case of image structures mainly orientated in horizontal or vertical direc-
tion, either the MAC for o1 or o2 should be significantly increased, while the
other one is correspondingly decreased. Therefore |MAC(o1, j)−MAC(o2, j)|
reaches a high value. Regarding image structures orientated in a diagonal di-
rection the first part of equation (12) vanishes, but, at the same time, the sec-
ond part increases. The normalization factor c assures that the added MACs
have equalized variances such that the influences of both parts of the sum are
comparable. In contrast to [14] each component of the second feature set is
not normalized to the corresponding component of the first set. We point out,
that a similar approach to characterize images by scale- and orientation-related
texture measures using wavelets has already used for the characterization of
corrosion images [15]. However, there the computed features used differ from
the ones we computed in this work.

3.3 Self Organizing Map

The Self Organizing Map (SOM) is a clustering approach from the field of ar-
tificial neural networks [12]. A set of reference or prototype vectors {uj},uj ∈
Rn, is trained according to a given data set of feature vectors {xi},xi ∈
Rn. Here, n is the number of features. The SOM is represented by a two-
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dimensional square grid, which consists of nodes each associated to one of
the reference vectors. During each learning step t a vector from the input
space xk is selected and the nearest reference vector um (winner node) is
identified by |um − xk| = minj|uj − xk| . The nodes are updated accord-
ing to uj(t + 1) = uj(t) + hmj(t)[xk − uj(t)]. The function hmj is defined as

hmj = α(t) exp− |rm−rj |2
2σ2(t)

, where α(t) is the learning rate factor. The vectors
rm and rj are the coordinates of the nodes in the SOM grid, with the winner
node m. The function σ(t) also decreases with time in order to reduce the
neighborhood included in the training procedure with time. The decreasing of
both functions freezes the SOM after a given number of iterations [12]. After a
successful training procedure the reference vectors depict the data distribution
in the data set preserving the topology.

3.3.1 SOM-based exploration procedure

The SOM is applied to visualize and explore a database content based on
specific image features. Since the images have a size of 256×256 pixels, features
of eight scales can be computed. The features of the coarsest two scales are
neglected, since the associated coefficients encode details corresponding to the
total or a quarter image, which does not seem to be senseful. Considering the
two sets of features (f1, f2), the two color channels (h1, h2) described above
and the remaining six scales a total number of 24 possible features has to be
taken into account.

The training procedure has been accomplished two times, firstly using the first
set of features f1 (12 feature vector components), secondly using the second
set of features f2 (12 feature vector components). The results are shown in
the Figures 3 and 4 respectively. An 8× 8 SOM grid has been utilized for the
exploration procedure. In each figure three types of SOM visualizations are
presented. At the top the clustering result is shown. For each feature vector,
i.e. each subimage, the nearest reference vector of the trained SOM can be
computed. In this way, each subimage is mapped to one node in the SOM
grid. In the visualization at the top each subimage is symbolized by a point
of the color corresponding to the class of tissue. This point is displayed at
the specific node, thus each node is visualized by the corresponding cluster
of feature vectors mapped to this node. In the middle the same SOM grid
is visualized in another mode. Here each node is marked with one of the
subimages of the respective cluster. To be explicit, the subimage associated
with the nearest feature vector has been chosen from the dominating tumor
class at the specific node. In this way, the distribution of histological features
can be explored. At the bottom of the figure the Component Plane Maps
are shown, a special visualization of the reference vector components. Each
little square is a visualization of the SOM grid and one component of the
reference vectors. The gray value shows the distribution of this component on
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the SOM grid. Since the reference vectors have twelve components in both
cases, twelve Component Plane Maps are shown, one map for each component
of the reference vector. Black color symbolizes low values of the component,
white color indicates high values.

3.3.1.1 Feature set f1 Starting with the analysis of Figure 3, the fol-
lowing conclusions can be derived. The clustering results visualized at the
top shows that this set of features is appropriate to discriminate psammoma-
tous (blue) and transitional (black) images. However, the meningothelioma-
tous (red) and the fibroblastic (green) classes are still strongly mixed. This is
especially due to the feature vector components 1− 6, which are the features
of the intensity image h1. In the Component Plane Maps these components
vary strongly from the top to the bottom of the SOM grid. By exploring the
corresponding subimages it becomes clear, that these components are linked
to tissue inhomogeneities in the extracellular matrix, which occur in both
classes. Furthermore the high scale component (component six) additionally
introduces an inner-class separation in the psammomatous group of tissue
(from top right to bottom right). The visualization of histological character-
istics reveals that this component is especially high in those images showing
large cracks in the tissue (bottom right of the SOM grid). Since the amount of
cracks in the tissue varies strongly in psammomatous tissue it is not considered
to be of diagnostic relevance. We will therefore neglect the components 1− 6
of feature set f1. The visualization further reveals some redundancy in the
components 7− 12 of this feature set. These components show a very similar
distribution. Some of them can therefore also be neglected. From the feature
set f1 only the components 9−10 are chosen for tissue characterization. These
components correspond to the scales 3 and 4 of the cell nuclei image h2.

3.3.1.2 Feature set f2 As described above this set of features is con-
structed to describe preferred orientations in the image. As expected the sep-
aration of the fibroblastic and the meningotheliomatous class as visualized
at the top of the figure is significantly increased compared to feature set f1.
However, the Component Plane Maps reveal that the components 6 and 12 as-
sociated to very coarse scale details do not show a distribution corresponding
to some histological interpretation and are therefore neglected. The remain-
ing components show strong redundancy, so in a next step we only choose
the components 3, 4, 9, 10 for tissue characterization. These components cor-
respond to the scales three and four of both color channels h1 and h2. The six
selected features are summarized in table 2.
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Fig. 3. Visualization of the SOM training result based on the feature set f1. Top: Vi-
sualization of cluster structure. Center: Visualization of histological characteristics.
Bottom: Component Plane Maps.
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Fig. 4. Visualization of the SOM training result based on the feature set f2. Top: Vi-
sualization of cluster structure. Center: Visualization of histological characteristics.
Bottom: Component Plane Maps.
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set of features h1 h2

f1 scale 3 & 4

f2 scale 3 & 4 scale 3 & 4
Table 2
Final set of features employed for tissue characterization.

4 Results and Discussion

In the foregoing section a subset of six features is selected from a total set
of 24 features. Here, the SOM training based on these selected features is re-
peated. The result is shown in Figure 5. Obviously, although only six features
have been selected from a group of 24 features, these features are clearly ap-
propriate for a good separation of the four classes of tissue. Due to a feature
selection based on histological interpretation, the components of the reference
vectors can be clearly linked to particular image structures at a clinical level
of understanding. This is shown in Figure 6. This Figure shows the reference
vectors associated to each node as a bar plot. Due to the visualization in the
image domain in Figure 5, we are able to link the characteristics of the refer-
ence vectors to the clinically relevant image structures, which is shown in the
table beneath. For example low values of all components of the feature vector
are characteristic for psammoma bodies while high values in all components
of the feature vector are typical for fibroblastic tissue, representing orientated
image structures and a significant amount of cell nuclei.

To prove that the subset of features selected above is more appropriate for
class separation than the combination of all possible features, a measure rat-
ing the class separation in the feature space is computed. Firstly, the center
of each class c in the feature space x̄c and the average distance of each class
center from the centers of the remaining three classes dist(c) is determined.
Secondly,the inner-class variance of each class σc is determined. All values are
normalized to the length of the feature vectors. This normalization assures,
that the results of feature vectors providing different dimensions are compara-
ble. A good separation of one class from the others is achieved, if the distance
of the class center to the other class centers is high and the inner-class vari-
ance is small. As a measure of the separation we therefore compute the ratio
rc = dist(c)√

σc
. The higher this ratio the better the class separation. In Table 3 the

ratios rc for the four classes based on different subsets of features are shown.
The selected subset of six features clearly outperforms the other combinations
of features.
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Fig. 5. Result of the SOM training based on the selected features. Top: Visualization
of cluster structure. Bottom: Visualization of histological characteristics.

5 Conclusions

We presented a framework for the semantic exploration of a wavelet-based
feature space. The introduction of a pre-processing step to enhance particular
image structures and the simultaneous visualization of the feature and image
space provides a method for the exploration of correlations of clustering re-
sults in the feature space to histological image characteristics.

The visualization methods presented allows the inclusion of medical expert
knowledge in the process of feature selection and thus the selection of a subset
of features with clinical relevance.
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orientated
amount of
increasing

structures

1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6

fascicular structure

bodies

collagen rich areas

increasing number of cell nuclei

spindle−shaped cell nuclei

psammoma

Component histological interpretation

1+2 number of cell nuclei

especially low values in psammoma bodies and areas of collagen

3+4 Amount of anisotropic tissue inhomogeneities

especially high values in case of parallel aligned cracks

in fibroblastic tissue

5+6 Anisotropic shaped cell nuclei

especially high values in fibroblastic tissue

Fig. 6. Top: A histological feature map derived from the visualization procedure. The
Map allows to clearly link numerical features to histological semantics (Bottom).

Due to selection of a small subset of features computational costs are re-
duced and difficulties associated with large feature vectors, sometimes called
the curse of dimensionality [10] can be avoided. Additionally, by utilizing a
class separation measure it was proven that the selected subset of features
leads to a separation of the four classes in the feature space with highest
accuracy.
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Features rc of tumor classes

meningo- fibro- psammo- transi-

theliomatous blastic matous tional

set f1 1.295 1.334 1.923 1.601

set f2 1.403 1.466 2.101 1.487

all features 1.369 1.386 1.968 1.518

selected features 1.735 1.741 2.992 1.954
Table 3
Separation of tumor classes according to different feature combinations.
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